3.2490 \(\int \frac{(2+3 x)^3}{\sqrt{1-2 x} \sqrt{3+5 x}} \, dx\)

Optimal. Leaf size=84 \[ -\frac{1}{10} \sqrt{1-2 x} \sqrt{5 x+3} (3 x+2)^2-\frac{\sqrt{1-2 x} \sqrt{5 x+3} (2220 x+5363)}{1600}+\frac{44437 \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )}{1600 \sqrt{10}} \]

[Out]

-(Sqrt[1 - 2*x]*(2 + 3*x)^2*Sqrt[3 + 5*x])/10 - (Sqrt[1 - 2*x]*Sqrt[3 + 5*x]*(5363 + 2220*x))/1600 + (44437*Ar
cSin[Sqrt[2/11]*Sqrt[3 + 5*x]])/(1600*Sqrt[10])

________________________________________________________________________________________

Rubi [A]  time = 0.0207372, antiderivative size = 84, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.154, Rules used = {100, 147, 54, 216} \[ -\frac{1}{10} \sqrt{1-2 x} \sqrt{5 x+3} (3 x+2)^2-\frac{\sqrt{1-2 x} \sqrt{5 x+3} (2220 x+5363)}{1600}+\frac{44437 \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )}{1600 \sqrt{10}} \]

Antiderivative was successfully verified.

[In]

Int[(2 + 3*x)^3/(Sqrt[1 - 2*x]*Sqrt[3 + 5*x]),x]

[Out]

-(Sqrt[1 - 2*x]*(2 + 3*x)^2*Sqrt[3 + 5*x])/10 - (Sqrt[1 - 2*x]*Sqrt[3 + 5*x]*(5363 + 2220*x))/1600 + (44437*Ar
cSin[Sqrt[2/11]*Sqrt[3 + 5*x]])/(1600*Sqrt[10])

Rule 100

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m - 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 1)), x] + Dist[1/(d*f*(m + n + p + 1)), I
nt[(a + b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1)
+ c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegerQ[m]

Rule 147

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_Symbol]
:> -Simp[((a*d*f*h*(n + 2) + b*c*f*h*(m + 2) - b*d*(f*g + e*h)*(m + n + 3) - b*d*f*h*(m + n + 2)*x)*(a + b*x)^
(m + 1)*(c + d*x)^(n + 1))/(b^2*d^2*(m + n + 2)*(m + n + 3)), x] + Dist[(a^2*d^2*f*h*(n + 1)*(n + 2) + a*b*d*(
n + 1)*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(m + n + 3)) + b^2*(c^2*f*h*(m + 1)*(m + 2) - c*d*(f*g + e*h)*(m + 1)*
(m + n + 3) + d^2*e*g*(m + n + 2)*(m + n + 3)))/(b^2*d^2*(m + n + 2)*(m + n + 3)), Int[(a + b*x)^m*(c + d*x)^n
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && NeQ[m + n + 2, 0] && NeQ[m + n + 3, 0]

Rule 54

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{(2+3 x)^3}{\sqrt{1-2 x} \sqrt{3+5 x}} \, dx &=-\frac{1}{10} \sqrt{1-2 x} (2+3 x)^2 \sqrt{3+5 x}-\frac{1}{30} \int \frac{\left (-171-\frac{555 x}{2}\right ) (2+3 x)}{\sqrt{1-2 x} \sqrt{3+5 x}} \, dx\\ &=-\frac{1}{10} \sqrt{1-2 x} (2+3 x)^2 \sqrt{3+5 x}-\frac{\sqrt{1-2 x} \sqrt{3+5 x} (5363+2220 x)}{1600}+\frac{44437 \int \frac{1}{\sqrt{1-2 x} \sqrt{3+5 x}} \, dx}{3200}\\ &=-\frac{1}{10} \sqrt{1-2 x} (2+3 x)^2 \sqrt{3+5 x}-\frac{\sqrt{1-2 x} \sqrt{3+5 x} (5363+2220 x)}{1600}+\frac{44437 \operatorname{Subst}\left (\int \frac{1}{\sqrt{11-2 x^2}} \, dx,x,\sqrt{3+5 x}\right )}{1600 \sqrt{5}}\\ &=-\frac{1}{10} \sqrt{1-2 x} (2+3 x)^2 \sqrt{3+5 x}-\frac{\sqrt{1-2 x} \sqrt{3+5 x} (5363+2220 x)}{1600}+\frac{44437 \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{3+5 x}\right )}{1600 \sqrt{10}}\\ \end{align*}

Mathematica [A]  time = 0.0910888, size = 60, normalized size = 0.71 \[ \frac{-90 \sqrt{1-2 x} \sqrt{5 x+3} \left (160 x^2+460 x+667\right )-44437 \sqrt{10} \sin ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )}{16000} \]

Antiderivative was successfully verified.

[In]

Integrate[(2 + 3*x)^3/(Sqrt[1 - 2*x]*Sqrt[3 + 5*x]),x]

[Out]

(-90*Sqrt[1 - 2*x]*Sqrt[3 + 5*x]*(667 + 460*x + 160*x^2) - 44437*Sqrt[10]*ArcSin[Sqrt[5/11]*Sqrt[1 - 2*x]])/16
000

________________________________________________________________________________________

Maple [A]  time = 0.012, size = 87, normalized size = 1. \begin{align*}{\frac{1}{32000}\sqrt{1-2\,x}\sqrt{3+5\,x} \left ( -28800\,{x}^{2}\sqrt{-10\,{x}^{2}-x+3}+44437\,\sqrt{10}\arcsin \left ({\frac{20\,x}{11}}+1/11 \right ) -82800\,x\sqrt{-10\,{x}^{2}-x+3}-120060\,\sqrt{-10\,{x}^{2}-x+3} \right ){\frac{1}{\sqrt{-10\,{x}^{2}-x+3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2+3*x)^3/(1-2*x)^(1/2)/(3+5*x)^(1/2),x)

[Out]

1/32000*(1-2*x)^(1/2)*(3+5*x)^(1/2)*(-28800*x^2*(-10*x^2-x+3)^(1/2)+44437*10^(1/2)*arcsin(20/11*x+1/11)-82800*
x*(-10*x^2-x+3)^(1/2)-120060*(-10*x^2-x+3)^(1/2))/(-10*x^2-x+3)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 4.10244, size = 78, normalized size = 0.93 \begin{align*} -\frac{9}{10} \, \sqrt{-10 \, x^{2} - x + 3} x^{2} - \frac{207}{80} \, \sqrt{-10 \, x^{2} - x + 3} x - \frac{44437}{32000} \, \sqrt{10} \arcsin \left (-\frac{20}{11} \, x - \frac{1}{11}\right ) - \frac{6003}{1600} \, \sqrt{-10 \, x^{2} - x + 3} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^3/(1-2*x)^(1/2)/(3+5*x)^(1/2),x, algorithm="maxima")

[Out]

-9/10*sqrt(-10*x^2 - x + 3)*x^2 - 207/80*sqrt(-10*x^2 - x + 3)*x - 44437/32000*sqrt(10)*arcsin(-20/11*x - 1/11
) - 6003/1600*sqrt(-10*x^2 - x + 3)

________________________________________________________________________________________

Fricas [A]  time = 1.73608, size = 221, normalized size = 2.63 \begin{align*} -\frac{9}{1600} \,{\left (160 \, x^{2} + 460 \, x + 667\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1} - \frac{44437}{32000} \, \sqrt{10} \arctan \left (\frac{\sqrt{10}{\left (20 \, x + 1\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{20 \,{\left (10 \, x^{2} + x - 3\right )}}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^3/(1-2*x)^(1/2)/(3+5*x)^(1/2),x, algorithm="fricas")

[Out]

-9/1600*(160*x^2 + 460*x + 667)*sqrt(5*x + 3)*sqrt(-2*x + 1) - 44437/32000*sqrt(10)*arctan(1/20*sqrt(10)*(20*x
 + 1)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 + x - 3))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (3 x + 2\right )^{3}}{\sqrt{1 - 2 x} \sqrt{5 x + 3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)**3/(1-2*x)**(1/2)/(3+5*x)**(1/2),x)

[Out]

Integral((3*x + 2)**3/(sqrt(1 - 2*x)*sqrt(5*x + 3)), x)

________________________________________________________________________________________

Giac [A]  time = 2.32757, size = 73, normalized size = 0.87 \begin{align*} -\frac{1}{80000} \, \sqrt{5}{\left (18 \,{\left (4 \,{\left (40 \, x + 91\right )}{\left (5 \, x + 3\right )} + 2243\right )} \sqrt{5 \, x + 3} \sqrt{-10 \, x + 5} - 222185 \, \sqrt{2} \arcsin \left (\frac{1}{11} \, \sqrt{22} \sqrt{5 \, x + 3}\right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^3/(1-2*x)^(1/2)/(3+5*x)^(1/2),x, algorithm="giac")

[Out]

-1/80000*sqrt(5)*(18*(4*(40*x + 91)*(5*x + 3) + 2243)*sqrt(5*x + 3)*sqrt(-10*x + 5) - 222185*sqrt(2)*arcsin(1/
11*sqrt(22)*sqrt(5*x + 3)))